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ABSTRACT: In this study, La Rioja wine terroir was investigated by the use of 1H NMR metabolomics on must and wine
samples. Rioja is a small wine region in central northern Spain which can geographically be divided into three subareas (Rioja
Alta, Rioja Baja, and Rioja Alavesa). The winemaking process from must, through alcoholic and malolactic fermentation, was
followed by NMR metabolomics and chemometrics of nine wineries in the Rioja subareas (terroirs). Application of interval
extended canonical variate analysis (iECVA) showed discriminative power between wineries which are geographically very close.
Isopentanol and isobutanol compounds were found to be key biomarkers for this differentiation.
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■ INTRODUCTION
The characterization of food authenticity and traceability is aimed
at protecting the consumer and food producers from commercial
or other types of fraud. In recent years, consumers have shown a
renewed interest toward foods that are strongly identified with
their place of origin.1,2 In particular, traceability and authenticity of
wine have been extensively investigated. Indeed, wine can be easily
adulterated, due to its complex chemical composition,3 which
depends on many and diverse factors such as grape variety,
environmental conditions, and enological practices. These factors
have great influence on wine quality and are very important in the
characterization and differentiation of wines from specific regions,
such as denomination of origin.
Wine consists of several hundred components presented at

different concentrations: water, ethanol, glycerol, sugars, organic
acids, and some amino acids being the major ones. The main and
secondary compounds are the result of the biological processes
occurring such as alcoholic and malolactic fermentations. The
nature and concentration of these metabolites depend on many
factors, including grape types and yeasts or bacteria responsible for
fermentations. Control of this process is therefore essential to
obtain a quality wine.4 In this context, the NMR emerges as a tool
for monitoring and controlling several biological processes such as
alcoholic and malolactic fermentations.5

In addition, consumers are more and more oriented toward
purchasing wines with a certified authenticity and geographical
origin. Authenticity testing of wine by NMR was early
introduced by Martin and co-workers6 who developed isotope
NMR for detecting fraud with sugar addition and wine mixing.
Currently, there is a great variety of analytical techniques
employed to identify wine authenticity due to the tremendous
motivation to guarantee wine quality. Most recently, metabolic
profiling through metabolomics7 have proven to be an effective
method to explore and detect metabolite changes that can be

used to compare, distinguish, and classify samples.8−10 Brescia
et al.11 used NMR analysis for detecting the geographical origin
of 41 red wines from various winemakers from the Apulia
region (Italy). Gaudillere et al.12−14 showed that the
combination of 1H NMR spectra with chemometric methods
by multivariate statistical analysis was able to discriminate
between grape samples from different environments or terroirs
situated in different locations in southwestern France
(Bordeaux), and in a similar study, Son et al.15 showed that
metabolomic studies could differentiate Korean grapes and
their wines of different geographical origin.
In this context, the question of geographic identification of

wines becomes even more interesting when it relates to small
production areas or “terroir”.16 The word terroir comes from the
French word terre and is used to describe the special characteristics
of a crop related to an agricultural site including soil, weather, and
farming techniques, which all contribute to the unique qualities of
the crop. The need for rediscovering the true values of agriculture
strictly related to terroir have led to the establishment of quality
certifications labels that have become a strategic instrument of
differentiation, and that gives the food products a commercial
added value. Indeed, quality wines are often produced in restricted
areas defined as denomination of origin (D.O.). In Rioja the
qualified denomination “Denominacioń de Origen Calificada
Rioja” (D.O.Ca. Rioja) is a small production area located in the
north of Spain with 635.93 km2 of vineyards divided between
three subareas (Figure 1): Rioja Alta (267.86 km2), Rioja Alavesa
(129.34 km2), and Rioja Baja (238.73 km2). The principal grape
variety of this area is called tempranillo (Vitis vinifera). The whole
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area benefits from the confluence of two opposed climates,
Atlantic and Mediterranean, which provide mild temperatures and
an annual rainfall of slightly above 400 L/m2, ideal conditions for
growing grapes. For the D.O.Ca. Rioja, the rating of the harvest
year (vintage ratings) is an important quality parameter and of
great importance for the consumer. As a result, every year the
vintages are classified into excellent, very good, good, or average in
terms of quality. Recently, we have developed a quantitative
method to evaluate the time course of the evolution of malic, lactic,
acetic and succinic acids, proline and alanine, and ethanol in the
alcoholic and malolactic fermentation of grape must from Rioja
Alta wines (Bodegas Dinastia Vivanco and Bodegas Patrocinio
S.C.L.).17,18 The aim of the present work is to explore19 the
winemaking process in Rioja by 1H NMR metabolomic finger-
printing and advanced chemometrics20 in order to find metabolites
that are responsible for the differentiation of time points in the
fermentation processes, the year of the wine production, and the
origin of wine, as well as the subarea and the winery.

■ MATERIALS AND METHODS
In this study we have selected a total of nine winemaking coopera-
tives, three from Rioja Baja, five from Rioja Alta, and one from Rioja
Alavesa (Figure 1). The samples were collected from the vintages
2006, 2007, and 2008. During 2006, we collected five samples from
each cooperative (located in Arnedo, Alcanadre, Arenzana de Abajo,
Navarrete, Haro, San Asensio, Uruñuela, and Labastida) at different
time points in the fermentation process: (1) before the alcoholic
fermentation, (2) at the end of alcoholic fermentation, (3) at the

beginning of malolactic fermentation, (4) middle point of malolactic
fermentation, and (5) after malolactic fermentation. In 2007, we
collected five corresponding time point samples for each cooperative
located in Arnedo, Arenzana de Abajo, Navarrete, Haro, and Uruñuela
and four time point samples for those in Aldeanueva and Labastida.
Finally, in 2008, we collected again five time point samples from Arnedo,
Aldeanueva, Arenzana de Abajo, Navarrete, Haro, and Uruñuela, and
three from Labastida. A total of 111 samples were obtained representing
three vintages, nine winemaking cooperatives, and five different
fermentation time points. The climatic conditions for three years are
shown in Supporting Information Figure 1.

The samples were collected from the fermentation tank, transported
from winery to laboratory, and preserved at −25 °C until analysis. The
simplest and fastest method for recording the spectra was used, and
this involved two steps. Samples were defrosted, and the pH was
measured (pH Meter BasiC Crison) and adjusted to 3 by the dropwise
addition of an aqueous solution of 0.1 N HCl. The must and wine
samples were centrifuged at 13000 rpm for 15 min, and the supernatant
(540 μL) was transferred into a 5 mm NMR tube together with D2O
(60 μL with the addition of the sodium salt of (trimethylsilyl)
propanoic-2,2,3,3-d4 acid (TSP) to give a final concentration of
0.58 mM in the NMR tube).

NMR Spectroscopy Analysis and Processing. NMR spectra
were recorded on a Bruker Avance III 600 operating at 600.13 MHz
for 1H, equipped with a double tuned cryoprobe (TCI) prepared for
5 mm (o.d.) sample tubes. Acquisition of spectra was carried out with
TOPSPIN software (version 3.1). Processing was performed with
MestReMnova (version 6.0). The spectrometer transmitter was locked
to D2O frequency using a mixture H2O−D2O (9:1), and all the spectra
were acquired at 298 K.

The 1H NMR spectra were recorded with the standard pulse
sequence for presaturation of the water signal at 2822.65 Hz (zgcppr
program pulse). The spectral window was 20.5 ppm, and data were
collected into 64k data points after 64 scans plus 2 dummy scans. The
relaxation delay (d1) was set to 10 s. All NMR experiments were carried
out with a fixed receiver gain (RG) which was estimate adequate through
several tests. The spectra were acquired using TOPSHIM tools and the
NMR SAMPLEJET that allows the automatic analysis of several samples.

Multivariate Data Analysis. Several classic and advanced
chemometric tools were used for extracting relevant information
from the acquired NMR data, and they are briefly described below.

Preprocessing. A normalization step was carried out on the data
matrix in order to correct vertical scale errors originating from the
different water content in the samples. Because no quantitative internal
standard was used, all whole spectra were normalized to unit area
(after having removed the spectral region containing the remaining
water signal), a technique that simply equalizes the global intensity
across the sample spectra not affecting the relative concentration of the
peaks within each spectrum and leading to improved interpretability
and quantification.21

Second, the normalized data matrix was overall corrected for errors
in chemical shift misalignments primarily concerning pH-dependent
signals using interval correlation optimized shifting (icoshift).22

Principal Component Analysis (PCA). PCA is a fundamental
approach for exploratory (unsupervised) data analysis that displays the
intrinsic data structure in a simple, low-dimensional orthogonal projection.
It highlights similarities and differences among groups as well as the
variables involved. The problem under investigation is usually reduced to
few latent factors, i.e., principal components (PCs), sorted by significance
(explained variance), which makes it easy to separate useful information
from noise, while avoiding any loss of information.

In the present study, PCA was also performed separately on the
three main wine 1H NMR spectral regions briefly named as follow: (1)
aromatic region (>5.5 ppm); (2) carbohydrate region (between 5.5
and 3.0 ppm); (3) organic acid region (<3.0 ppm). This approach
accounts for different types of molecular functional groups leading to
improved chemometric performance, improved simplicity, and robust-
ness of the obtained models and improved interpretation.
Furthermore, the three considered spectral regions have substantial
differences in signal intensities that cannot be solved with a simple

Figure 1. Overview of the geographical subareas of La Rioja region,
the location of the vineyards, and a schematic summary of the
experimental design.
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Figure 2. 1H NMR spectra of must and wine including assignment of the signals listed in Table 1.

Table 1. 1H NMR Chemical Shifts and Coupling Constants (Hz) of Must and Wine Compounds and Using 1H NMR Spectra of
Samples with Standard Added

no. compounda 1H chemical shifts (δ) and coupling constants (Hz) group

1 ethanal 9.66 (s), 2.22 (s) CHO, CH3

2 histidine 8.66 (s), 7.39 (s) CH, CH
3 formic acid 8.36 (s) HCO2H
4 resveratrol 7.39 (d, J = 8.2), 7.01 (d, J = 16.7), 6.86−6.82 (m), 6.53 (d, J = 13.1), 6.24 (d, J = 8.1) CH, CH, CH, CH, CH
5 2-phenylethanol 7.37 (t, aromatics), 7.29 (dd, aromatics), 2.85 (t, J = 6.8, J = 6.8) CH, CH, CH2

6 tyrosine 7.18 (d, J = 8.5), 6.88 (d, J = 8.4) CH, CH
7 gallic acid 7.15 (s) CH
8 fumaric acid 6.52 (s) CH
9 α-glucose 5.23 (d, J = 7.9) CH
10 tartaric acid 4.60 (s) CH
11 β-glucose 4.64 (d, J = 3.7) CH
12 α,β-fructose 4.10 (d, J = 3.7) CH
13 ethanol 3.68 (q, J = 7.3), 1.17 (t, J = 7.3) CH2, CH3

14 glycerol 3.57−3.49 (m) CH2

15 methanol 3.35 (s) CH3

16 choline 3.19 (s) CH3

17 GABA 3.13−3.09 (m), 2.49 (t, J = 7.3), 1.96 −1.87 (m) CH2, CH2, CH2

18 citric acid 2.96 (d, J = 15.7) CH
19 malic acid 2.84 (dd, J = 8.0, J = 16.4) CH2

20 succinic acid 2.65 (s) CH2

21 glutamine 2.48−2.42 (m), 2.15−2.11 (m) CH2, CH2

glutamic acid 2.46−2.39 (m), 2.14−2.11 (m) CH2, CH2

22 proline 2.38−2.31 (m) CH2

23 valine 2.31−2.25 (m), 1.05 (d, J = 7.0), 0.99 (d, J = 7.0) CH, CH3, CH3

24 acetic acid 2.08 (s) CH3

25 arginine 1.60−1.69 (m) CH2

26 alanine 1.48 (d, J = 7.4) CH3

27 lactic acid 1.40 (d, J = 6.8) CH3

28 threonine 1.33 (d, J = 6.6) CH3

29 2,3-butanediol 1.13 (d, J = 6.3) CH3

30 leucine 0.95 (d, J = 6.8) CH3

31 isobutanol 0.87 (d, J = 6.7) CH3

isopentanol 0.88 (d, J = 6.8) CH3

1-propanol 0.88 (t, J = 7.5, J = 7.5) CH3
aIdentified in the literature.9,12,18,28−33
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Table 2. 1H NMR Chemical Shifts and Coupling Constants (Hz) of Must and Wine Carbohydrate Compounds and Using 1H
NMR Spectra of Samples with Standard Added

no. compounda 1H chemical shifts (δ) and coupling constants (Hz) carbohydrate concentration interval (mg/L)

c1 ribose 5.38 (d, J = 3.7), 5.25 (d, J = 1.7), 4.93 (d, J = 6.5), 4.16−4.07 (m) 3.90−28.1
c2 unknown 5.31 (d, J = 3.7)
c3 arabinose 5.30 (d, J = 4.3), 5.24 (d, J = 3.5), 4.52 (d, J = 7.8) 5.00−144
c4 fucose 5.28 (d, J = 4.3), 5.23 (d, J = 2.9), 5.21 (d, J = 3.8), 4.56 (d, J = 7.9), 4.22−4.15 (m) 0.13−320
c5 galactose 5.25 (d, J = 3.6), 5.22 (d, J = 3.2), 3.98 (d, J = 3.1), 3.93 (d J = 3.3) 5.80−124
c6 gentibiose 5.23 (d, J = 3.7), 4.66 (d, J = 7.9), 4.50 (t, J = 7.5), 4.24−4.11 (m) 13.8−18.4
c7 lactose 5.23 (d, J = 3.7), 4.67 (d, J = 7.9), 4.45 (d, J = 7.8), 3.94 (d J = 3.1) 5.2−7.2
c8 glucose 5.23 (α, d, J = 7.9), 4.64 (β, d, J = 3.7) 1.64−30.1
c9 trehalose 5.20 (d, J = 3.8) 3.4−132
c10 xylose 5.20 (d, J = 3.6), 3.93 (dd, J = 5.4, J = 11.5) 0.24−58.3
c11 mannose 5.18 (d, J = 1.2), 3.96−3.92 (m) 2.6−194
c12 rhamnose 5.12 (d, J = 1.4), 3.93 (t, J = 2.6, J = 2.6) 1.14−46.0
c13 fructose 4.10 (α,β, d, J = 3.7) 2.9−31.6

aIdentified in the literature.34−38

Figure 3. 1H NMR spectra of must and wine including assignment of the carbohydrate signals listed in Table 2.

Figure 4. PCA based on the NMR spectra of the 111 samples of must and wine: (A) scores plot; (B) loading plot.
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scaling of the data and which may lead to a loss of investigative
efficacy; the approached method also compensates for this.
Extended Canonical Variable Analysis (ECVA) and Interval

Extended Canonical Variable Analysis (iECVA). ECVA23,24 is a
recent chemometric classification tool representing a new approach for
grouping samples based on the canonical variates analysis but extended
to multivariate covariate data using an underlying PLS engine. ECVA
is a powerful classification method, but because it is a supervised
method careful validation is required in order to avoid overfitting.
iECVA25,26 is an extension of the iPLS concept27 to ECVA designed to
provide meaningful information about which spectral regions hold the
main relevance responsible for the separation among groups. The

iECVA tool performs a series of ECV analyses, one for the whole
spectrum and one for each defined interval (subregion of the spectrum
having full resolution). At last, the performances of each interval are
compared among each other and against the overall model, and the
final results are represented in a summarizing plot that highlights the
most important spectral features and enables an easier biomarker
profiling. In the present application, the entire data set was subdivided
into 100 segments of equal size (intervals). This segmentation does
not lead to any reduction of data, like binning does, but it provides an
overview of the relevant information in different spectral subdivisions.

Data alignment was performed using Matlab (2007a, The
Mathworks Inc., Natick, MA) using the icoshift toolbox available at

Figure 5. Overview of the changes during malolactic fermentation; (A) NMR spectra on the three different time points during malolactic
fermentation; (B) PCA scores plot based on the acid region (1.3−3.2 ppm) of 1H NMR spectra of must and wine (67 samples). The green points
correspond to time point 1, end of alcoholic fermentation; the blue points correspond to time point 2, middle point of malolactic fermentation; the
red points correspond to time point 3, end of malolactic fermentation. The time trajectory of a representative wine process is indicated by the arrows.
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http://www.models.life.ku.dk/algorithms/. LatentiX 2.0 (www.
latentix.com, Latent5, Copenhagen, Denmark), able to share data
with Matlab, was used to carry out PCA analyses on the pareto-scaled
data matrices. The pareto-scaling technique reduces the relative
importance of large values (high intensities as for ethanol) but keeps
the data structure partially intact.26 The data were explored for
information able to separate the samples according to vintage, regions,
and wineries. ECVA and iECVA were carried out in Matlab using the
ECVA toolbox available at http://www.models.life.ku.dk/algorithms/.
Unless otherwise noted, all reported results are fully cross-validated.

■ RESULTS AND DISCUSSION

The NMR Spectra. Three different areas of the NMR
spectra were analyzed separately, corresponding to organic
acids (1.3−3.2 ppm), carbohydrates (3.2−5.5 ppm), aromatic
compounds in must (5.5−10.0 ppm), and aromatic compounds
in wine (6.4−10.0 ppm) (Figure 2). The average NMR spectra
of must and wine are shown in Figure 2 including indications
(1 → 31) of important assigned metabolites which are listed in
Table 1. The primary difference arising in the NMR spectra
moving from must to wine was the disappearance of the
carbohydrate signals (sugars) in the must and the emergence of
strong alcohol and organic acid signals in the wine, while the
content of aromatic compounds remained relatively constant.
However, in wine, the carbohydrates did not disappear
completely but left a complex fingerprint, shown in Figure 3,

with the contribution of a minimum 13 different mono-
saccharides or disaccharides that are assigned in Table 2.

The Alcoholic Fermentation. There are two principal
processes in Rioja red wine production: alcoholic fermentation
and malolactic fermentation. In the first process, sugars are
transformed into ethanol and CO2. In the second process, the
most important transformation is the conversion of malic acid to
the weaker lactic acid, providing a wine with a less acidic and more
round taste. In order to obtain an overview of all 111 samples,
a principal component analysis (PCA) was carried out. The
resulting scores and loadings plot, Figure 4, show a complete
differentiation between must and wine samples (when alcoholic
fermentation is completed). The major variation in the NMR data
is thus the ethanol content, and indeed four samples of must show
a deviating pattern because they were collected at a time when the
alcoholic fermentation had already begun.

The Malolactic Fermentation. In order to investigate the
malolactic fermentation, a PCA was conducted including only the
67 wine samples that are distributed according to the three malo-
lactic fermentation time points: (1) end of alcoholic fermentation;
(2) middle point of malolactic fermentation; (3) end of malolactic
fermentation. In this case, only the organic acid area from spectra
was taken into consideration (Figure 5A shows spectra for three
samples that belong to each time point during the malolactic
fermentation). The main metabolic change is the transformation

Figure 6. PCA scores plot obtained to discriminate between subareas: (A) samples of must (20 samples) using the carbohydrate region (3.2−5.5 ppm) of
the spectra (a total variance of 46.6% is explained); (B) samples of wine (22 samples) using the aromatic compounds region (5.5−10.0 ppm) of the spectra
(the black points correspond to samples from Rioja Baja, red points to Rioja Alta, and green points to Rioja Alavesa, and a total variance of 40.2% is
explained). The PCA score plot obtained to discriminate between vintage: (C) 12 samples of must from Rioja Alta using the aromatic compound region of
the spectra (a total variance of 52.1% is explained); (D) 22 samples of wine from all wineries using the aromatic compound region of the spectra (the white
points correspond to samples of 2006, gray points to samples of 2007, and black points to samples of 2008, and a total variance of 59.2% is explained).
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of malic acid (2.84 ppm) into lactic acid (1.40 ppm). Control of
this fermentation process is essential in order to obtain a balanced
wine of high quality. The PCA scores plot (Figure 5B) shows the
three malolactic fermentation time points.
Differentiation of the Subareas inside Rioja D.O.Ca.

Discrimination of the three subareas of Rioja was investigated
for both must and wine samples. Figure 6A shows a PCA score
plot of the 20 must samples based on the carbohydrate region
of the spectra which was the only discriminative region. The
score plot in Figure 6A shows that two subareas are clearly
separated: Rioja Alta plus Rioja Alavesa and Rioja Baja. Only

the winery in Rioja Alavesa (located in Labastida) cannot be
distinguished, presumably because it is a very close neighbor to the
subarea of Rioja Alta (Figure 1). In case of the final wine samples,
the best discriminative spectral region proved to be the aromatic
one. The PCA scores plot derived from this region is shown in
figure 6B and reveals that a complete classification on the subareas
cannot be obtained using this unsupervised analysis even though a
clear tendency in this direction can be observed. Taking data from
22 final wine samples and using the spectrum in the area of
aromatic compounds, plot of the scores in PC4 versus PC1 space
explains 40.2% of the total variance (Figure 6B).

The Vintage. Discrimination based on the production year
was also investigated using PCA. Using 12 samples of must from
Rioja Alta, and the aromatic compound region of the NMR
spectra (5.5−10.0 ppm), the scatter plot of PC4 versus PC1 scores
is shown in Figure 6C, showing three different groups
corresponding to vintages 2006, 2007, and 2008 but providing
only weak indication for a discrimination. In contrast, the vintage
of 2006 was clearly distinguished in a PCA scores plot, obtained
from the aromatic spectral region (6.4−10.0 ppm), of the 22 final
wine samples (Figure 6D). This result has been supported by the
average temperature measured in the different areas of la Rioja
(see Figure 1 in Supporting Information).

Interval Extended Canonical Variate Analysis (iECVA).
In order to scrutinize the spectra for signals able to distinguish
geographical regions, interval extended canonical variate
analysis (iECVA) was carried out on the wine spectra using
100 equally sized subintervals. Using this procedure, and
assuming that the samples originating from Rioja Alta and
Alavesa belong to the same group (as suggested by the PCA
scores plot in Figure 6A and 6B), one interval was found able to
significantly improve the classification (Figure 7).

Figure 7. iECVA plot for the classification of the two major subareas in la Rioja based on 26 wine samples of the 2007 vintage. The plot shows the
number of misclassifications (bars) for each spectral interval and for the global spectral model (red stipulated line). The NMR spectra are an average
of the 26 sample spectra.

Figure 8. ECVA score plot from the 54th interval in the 2007 vintage.
Rioja Alta and Rioja Alavesa are shown in blue, and Rioja Baja is
plotted in green.
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The iECVA plot in Figure 7 reveals that the 54th interval
(5.25−5.35 ppm) was able to reduce the number of
misclassifications from 5 to 0 with respect to the global

model. This interval includes unidentified signals of some
anomeric protons from a carbohydrate molecule (unknown
compound in Table 2), and in literature it has been assigned to

Figure 9. iECVA plot 1H NMR average spectra of 26 wine samples of the 2007 vintage indicating the best interval (no. 100) for the lowest number
of misclassifications in order to evaluate different wineries. The highlighted interval is shown in the zoomed inset containing the signals arising from
isobutanol and isopentanol substances.

Figure 10. ECVA score plot from the 100th interval (0.83−0.93 ppm) in the 2007 vintage showing the discrimination between individual wineries in
la Rioja.
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an anthocyanin linked to a glyceryl carrier.28 In Rioja wines studied
in this work, this substance or class of substances is able to perfectly
discriminate subareas in the three studied years. In Figure 8, we
show the bar charts for 2007 (bar charts of 2006 and 2008 vintages
are reported in Supporting Information Figures 2 and 3). Using the
26 samples belonging to the 2007 vintage, only three components
were sufficient for obtaining the complete differentiation with
0 misclassifications (0.00% error).
iECVA was also applied in an attempt to investigate signals able

to distinguish the single wineries. Indeed, an interesting interval
was found by iECVA, which was able to improve the classification
rate significantly (Figure 9). The 100th interval (0.83−0.93 ppm)
was able to reduce the number of misclassifications from 16 to 2
with respect to the global model. This interval includes two signals
corresponding to isobutanol (0.87 ppm, d, 3J = 6.71 Hz) and
isopentanol (0.88 ppm, d, 3J = 6.76 Hz). The signals were
confirmed by spiking, adding the pure compounds to the wine
samples and acquiring new NMR spectra.
Apparently, isobutanol and isopentanol contain effective

information about the differentiation between wineries across
the three vintages. Figure 10 shows the iECVA score plots for
2007 (score plots for 2006 and 2008 are reported in Supporting
Information Figures 4 and 5). Using the 26 samples belonging
to the 2007 vintage, seven components were required in order
to obtain the differentiation with two misclassifications (7.69%
error). It should be emphasized that with this small interval, it is
possible to differentiate wines from wineries that are in close
geographical proximity. Isopentanol and isobutanol may be
considered as significant biomarkers for the differentiation of
individual wineries from this wine region.
In conclusion, we have demonstrated that the winemaking pro-

cess in la Rioja can be efficiently explored by means of 1H NMR
metabolite profiling of wine and must. The study shows that the
musts and wines can be differentiated in time points of the
fermentation processes, in subareas, and also to a certain extent in
different vintages. Moreover, by means of extended cannonical
variates analysis of 1H NMR spectral intervals, a very good
discrimination was found even at the individual winery level. This
latter finding is remarkable because the wineries are in close geogra-
phical proximity and because a small NMR spectral region, which is
assigned to resonances from isopentanol and isobutanol, was found
to contain the information for such a discrimination, revealing these
substances to be important biomarkers of la Rioja terroir.
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